In this tutorial we compare the formulation of a Navier-Stokes problem using standard assembly with mixed function spaces and block assembly. This tutorial serves as a reminder on how to solve a nonlinear problem in dolfinx
interfacing to SNES
(part of PETSc
), and shows a further usage of multiphenicsx.fem.petsc.BlockVecSubVectorWrapper
.
import typing
import basix.ufl
import dolfinx.fem
import dolfinx.fem.petsc
import dolfinx.io
import gmsh
import mpi4py.MPI
import numpy as np
import numpy.typing
import petsc4py.PETSc
import ufl
import viskex
import multiphenicsx.fem
import multiphenicsx.fem.petsc
nu = 0.01
def u_in_eval(x: np.typing.NDArray[np.float64]) -> np.typing.NDArray[ # type: ignore[no-any-unimported]
petsc4py.PETSc.ScalarType]:
"""Return the flat velocity profile at the inlet."""
values = np.zeros((2, x.shape[1]))
values[0, :] = 1.0
return values
def u_wall_eval(x: np.typing.NDArray[np.float64]) -> np.typing.NDArray[ # type: ignore[no-any-unimported]
petsc4py.PETSc.ScalarType]:
"""Return the zero velocity at the wall."""
return np.zeros((2, x.shape[1]))
pre_step_length = 4.
after_step_length = 14.
pre_step_height = 3.
after_step_height = 5.
mesh_size = 1. / 5.
gmsh.initialize()
gmsh.model.add("mesh")
p0 = gmsh.model.geo.addPoint(0.0, after_step_height - pre_step_height, 0.0, mesh_size)
p1 = gmsh.model.geo.addPoint(pre_step_length, after_step_height - pre_step_height, 0.0, mesh_size)
p2 = gmsh.model.geo.addPoint(pre_step_length, 0.0, 0.0, mesh_size)
p3 = gmsh.model.geo.addPoint(pre_step_length + after_step_length, 0.0, 0.0, mesh_size)
p4 = gmsh.model.geo.addPoint(pre_step_length + after_step_length, after_step_height, 0.0, mesh_size)
p5 = gmsh.model.geo.addPoint(0.0, after_step_height, 0.0, mesh_size)
l0 = gmsh.model.geo.addLine(p0, p1)
l1 = gmsh.model.geo.addLine(p1, p2)
l2 = gmsh.model.geo.addLine(p2, p3)
l3 = gmsh.model.geo.addLine(p3, p4)
l4 = gmsh.model.geo.addLine(p4, p5)
l5 = gmsh.model.geo.addLine(p5, p0)
line_loop = gmsh.model.geo.addCurveLoop([l0, l1, l2, l3, l4, l5])
domain = gmsh.model.geo.addPlaneSurface([line_loop])
gmsh.model.geo.synchronize()
gmsh.model.addPhysicalGroup(1, [l5], 1)
gmsh.model.addPhysicalGroup(1, [l0, l1, l2, l4], 2)
gmsh.model.addPhysicalGroup(2, [domain], 0)
gmsh.model.mesh.generate(2)
Info : Meshing 1D... Info : [ 0%] Meshing curve 1 (Line) Info : [ 20%] Meshing curve 2 (Line) Info : [ 40%] Meshing curve 3 (Line) Info : [ 60%] Meshing curve 4 (Line) Info : [ 70%] Meshing curve 5 (Line) Info : [ 90%] Meshing curve 6 (Line) Info : Done meshing 1D (Wall 0.000504692s, CPU 0.000795s) Info : Meshing 2D... Info : Meshing surface 1 (Plane, Frontal-Delaunay) Info : Done meshing 2D (Wall 0.0525351s, CPU 0.052569s) Info : 2520 nodes 5044 elements
mesh, subdomains, boundaries, *_ = dolfinx.io.gmshio.model_to_mesh(
gmsh.model, comm=mpi4py.MPI.COMM_WORLD, rank=0, gdim=2)
gmsh.finalize()
assert subdomains is not None
assert boundaries is not None
# Create connectivities required by the rest of the code
mesh.topology.create_connectivity(mesh.topology.dim - 1, mesh.topology.dim)
boundaries_1 = boundaries.indices[boundaries.values == 1]
boundaries_2 = boundaries.indices[boundaries.values == 2]
viskex.dolfinx.plot_mesh(mesh)
error: XDG_RUNTIME_DIR is invalid or not set in the environment. MESA: error: ZINK: failed to choose pdev glx: failed to create drisw screen
viskex.dolfinx.plot_mesh_tags(mesh, boundaries, "boundaries")
error: XDG_RUNTIME_DIR is invalid or not set in the environment. MESA: error: ZINK: failed to choose pdev glx: failed to create drisw screen
V_element = basix.ufl.element("Lagrange", mesh.basix_cell(), 2, shape=(mesh.geometry.dim, ))
Q_element = basix.ufl.element("Lagrange", mesh.basix_cell(), 1)
def run_monolithic() -> dolfinx.fem.Function:
"""Run standard formulation using a mixed function space."""
# Function spaces
W_element = basix.ufl.mixed_element([V_element, Q_element])
W = dolfinx.fem.functionspace(mesh, W_element)
# Test and trial functions: monolithic
vq = ufl.TestFunction(W)
(v, q) = ufl.split(vq)
dup = ufl.TrialFunction(W)
up = dolfinx.fem.Function(W)
(u, p) = ufl.split(up)
# Variational forms
F = (nu * ufl.inner(ufl.grad(u), ufl.grad(v)) * ufl.dx
+ ufl.inner(ufl.grad(u) * u, v) * ufl.dx
- ufl.inner(p, ufl.div(v)) * ufl.dx
+ ufl.inner(ufl.div(u), q) * ufl.dx)
J = ufl.derivative(F, up, dup)
# Boundary conditions
W0 = W.sub(0)
V, _ = W0.collapse()
u_in = dolfinx.fem.Function(V)
u_in.interpolate(u_in_eval)
u_wall = dolfinx.fem.Function(V)
u_wall.interpolate(u_wall_eval)
bdofs_V_1 = dolfinx.fem.locate_dofs_topological((W0, V), mesh.topology.dim - 1, boundaries_1)
bdofs_V_2 = dolfinx.fem.locate_dofs_topological((W0, V), mesh.topology.dim - 1, boundaries_2)
inlet_bc = dolfinx.fem.dirichletbc(u_in, bdofs_V_1, W0)
wall_bc = dolfinx.fem.dirichletbc(u_wall, bdofs_V_2, W0)
bc = [inlet_bc, wall_bc]
# Class for interfacing with SNES
class NavierStokesProblem:
"""Define a nonlinear problem, interfacing with SNES."""
def __init__( # type: ignore[no-any-unimported]
self, F: ufl.Form, J: ufl.Form, solution: dolfinx.fem.Function,
bcs: list[dolfinx.fem.DirichletBC], P: typing.Optional[ufl.Form] = None
) -> None:
self._F = dolfinx.fem.form(F)
self._J = dolfinx.fem.form(J)
self._obj_vec = dolfinx.fem.petsc.create_vector(self._F)
self._solution = solution
self._bcs = bcs
self._P = P
def create_snes_solution(self) -> petsc4py.PETSc.Vec: # type: ignore[no-any-unimported]
"""
Create a petsc4py.PETSc.Vec to be passed to petsc4py.PETSc.SNES.solve.
The returned vector will be initialized with the initial guess provided in `self._solution`.
"""
x = self._solution.x.petsc_vec.copy()
with x.localForm() as _x, self._solution.x.petsc_vec.localForm() as _solution:
_x[:] = _solution
return x
def update_solution(self, x: petsc4py.PETSc.Vec) -> None: # type: ignore[no-any-unimported]
"""Update `self._solution` with data in `x`."""
x.ghostUpdate(addv=petsc4py.PETSc.InsertMode.INSERT, mode=petsc4py.PETSc.ScatterMode.FORWARD)
with x.localForm() as _x, self._solution.x.petsc_vec.localForm() as _solution:
_solution[:] = _x
def obj( # type: ignore[no-any-unimported]
self, snes: petsc4py.PETSc.SNES, x: petsc4py.PETSc.Vec
) -> np.float64:
"""Compute the norm of the residual."""
self.F(snes, x, self._obj_vec)
return self._obj_vec.norm() # type: ignore[no-any-return]
def F( # type: ignore[no-any-unimported]
self, snes: petsc4py.PETSc.SNES, x: petsc4py.PETSc.Vec, F_vec: petsc4py.PETSc.Vec
) -> None:
"""Assemble the residual."""
self.update_solution(x)
with F_vec.localForm() as F_vec_local:
F_vec_local.set(0.0)
dolfinx.fem.petsc.assemble_vector(F_vec, self._F)
dolfinx.fem.petsc.apply_lifting(F_vec, [self._J], [self._bcs], x0=[x], alpha=-1.0)
F_vec.ghostUpdate(addv=petsc4py.PETSc.InsertMode.ADD, mode=petsc4py.PETSc.ScatterMode.REVERSE)
dolfinx.fem.petsc.set_bc(F_vec, self._bcs, x, -1.0)
def J( # type: ignore[no-any-unimported]
self, snes: petsc4py.PETSc.SNES, x: petsc4py.PETSc.Vec, J_mat: petsc4py.PETSc.Mat,
P_mat: petsc4py.PETSc.Mat
) -> None:
"""Assemble the jacobian."""
J_mat.zeroEntries()
dolfinx.fem.petsc.assemble_matrix( # type: ignore[misc]
J_mat, self._J, self._bcs, diagonal=1.0) # type: ignore[arg-type]
J_mat.assemble()
if self._P is not None:
P_mat.zeroEntries()
dolfinx.fem.petsc.assemble_matrix( # type: ignore[misc]
P_mat, self._P, self._bcs, diagonal=1.0) # type: ignore[arg-type]
P_mat.assemble()
# Create problem
problem = NavierStokesProblem(F, J, up, bc)
F_vec = dolfinx.fem.petsc.create_vector(problem._F)
J_mat = dolfinx.fem.petsc.create_matrix(problem._J)
# Solve
snes = petsc4py.PETSc.SNES().create(mesh.comm)
snes.setTolerances(max_it=20)
snes.getKSP().setType("preonly")
snes.getKSP().getPC().setType("lu")
snes.getKSP().getPC().setFactorSolverType("mumps")
snes.setObjective(problem.obj)
snes.setFunction(problem.F, F_vec)
snes.setJacobian(problem.J, J=J_mat, P=None)
snes.setMonitor(lambda _, it, residual: print(it, residual))
up_copy = problem.create_snes_solution()
snes.solve(None, up_copy)
problem.update_solution(up_copy) # TODO can this be safely removed?
up_copy.destroy()
snes.destroy()
return up
up_m = run_monolithic()
(u_m, p_m) = (up_m.sub(0).collapse(), up_m.sub(1).collapse())
0 5.423530856245577 1 0.12945659318075836
2 0.04875205308048853 3 0.01245509718119217 4 0.01045448218377124 5 0.0008411904377641378
6 4.2733147396818654e-05 7 5.832046606872697e-08 8 2.8938906872571975e-13
viskex.dolfinx.plot_vector_field(u_m, "u")
error: XDG_RUNTIME_DIR is invalid or not set in the environment. MESA: error: ZINK: failed to choose pdev glx: failed to create drisw screen
viskex.dolfinx.plot_vector_field(u_m, "u", glyph_factor=1.0)
error: XDG_RUNTIME_DIR is invalid or not set in the environment. MESA: error: ZINK: failed to choose pdev glx: failed to create drisw screen
viskex.dolfinx.plot_scalar_field(p_m, "p")
error: XDG_RUNTIME_DIR is invalid or not set in the environment.
MESA: error: ZINK: failed to choose pdev glx: failed to create drisw screen
def run_block() -> tuple[dolfinx.fem.Function, dolfinx.fem.Function]:
"""Run block formulation using two independent function spaces."""
# Function spaces
V = dolfinx.fem.functionspace(mesh, V_element)
Q = dolfinx.fem.functionspace(mesh, Q_element)
# Test and trial functions
(v, q) = (ufl.TestFunction(V), ufl.TestFunction(Q))
(du, dp) = (ufl.TrialFunction(V), ufl.TrialFunction(Q))
(u, p) = (dolfinx.fem.Function(V), dolfinx.fem.Function(Q))
# Variational forms
F = [(nu * ufl.inner(ufl.grad(u), ufl.grad(v)) * ufl.dx + ufl.inner(ufl.grad(u) * u, v) * ufl.dx
- ufl.inner(p, ufl.div(v)) * ufl.dx),
ufl.inner(ufl.div(u), q) * ufl.dx]
J = [[ufl.derivative(F[0], u, du), ufl.derivative(F[0], p, dp)],
[ufl.derivative(F[1], u, du), ufl.derivative(F[1], p, dp)]]
# Boundary conditions
u_in = dolfinx.fem.Function(V)
u_in.interpolate(u_in_eval)
u_wall = dolfinx.fem.Function(V)
u_wall.interpolate(u_wall_eval)
bdofs_V_1 = dolfinx.fem.locate_dofs_topological(V, mesh.topology.dim - 1, boundaries_1)
bdofs_V_2 = dolfinx.fem.locate_dofs_topological(V, mesh.topology.dim - 1, boundaries_2)
inlet_bc = dolfinx.fem.dirichletbc(u_in, bdofs_V_1)
wall_bc = dolfinx.fem.dirichletbc(u_wall, bdofs_V_2)
bc = [inlet_bc, wall_bc]
# Class for interfacing with SNES
class NavierStokesProblem:
"""Define a nonlinear problem, interfacing with SNES."""
def __init__( # type: ignore[no-any-unimported]
self, F: list[ufl.Form], J: list[list[ufl.Form]],
solutions: tuple[dolfinx.fem.Function, dolfinx.fem.Function],
bcs: list[dolfinx.fem.DirichletBC],
P: typing.Optional[list[list[ufl.Form]]] = None
) -> None:
self._F = dolfinx.fem.form(F)
self._J = dolfinx.fem.form(J)
self._obj_vec = dolfinx.fem.petsc.create_vector_block(self._F)
self._solutions = solutions
self._bcs = bcs
self._P = P
def create_snes_solution(self) -> petsc4py.PETSc.Vec: # type: ignore[no-any-unimported]
"""
Create a petsc4py.PETSc.Vec to be passed to petsc4py.PETSc.SNES.solve.
The returned vector will be initialized with the initial guesses provided in `self._solutions`,
properly stacked together in a single block vector.
"""
x = dolfinx.fem.petsc.create_vector_block(self._F)
with multiphenicsx.fem.petsc.BlockVecSubVectorWrapper(x, [V.dofmap, Q.dofmap]) as x_wrapper:
for x_wrapper_local, sub_solution in zip(x_wrapper, self._solutions):
with sub_solution.x.petsc_vec.localForm() as sub_solution_local:
x_wrapper_local[:] = sub_solution_local
return x
def update_solutions(self, x: petsc4py.PETSc.Vec) -> None: # type: ignore[no-any-unimported]
"""Update `self._solutions` with data in `x`."""
x.ghostUpdate(addv=petsc4py.PETSc.InsertMode.INSERT, mode=petsc4py.PETSc.ScatterMode.FORWARD)
with multiphenicsx.fem.petsc.BlockVecSubVectorWrapper(x, [V.dofmap, Q.dofmap]) as x_wrapper:
for x_wrapper_local, sub_solution in zip(x_wrapper, self._solutions):
with sub_solution.x.petsc_vec.localForm() as sub_solution_local:
sub_solution_local[:] = x_wrapper_local
def obj( # type: ignore[no-any-unimported]
self, snes: petsc4py.PETSc.SNES, x: petsc4py.PETSc.Vec
) -> np.float64:
"""Compute the norm of the residual."""
self.F(snes, x, self._obj_vec)
return self._obj_vec.norm() # type: ignore[no-any-return]
def F( # type: ignore[no-any-unimported]
self, snes: petsc4py.PETSc.SNES, x: petsc4py.PETSc.Vec, F_vec: petsc4py.PETSc.Vec
) -> None:
"""Assemble the residual."""
self.update_solutions(x)
with F_vec.localForm() as F_vec_local:
F_vec_local.set(0.0)
dolfinx.fem.petsc.assemble_vector_block( # type: ignore[misc]
F_vec, self._F, self._J, self._bcs, x0=x, alpha=-1.0)
def J( # type: ignore[no-any-unimported]
self, snes: petsc4py.PETSc.SNES, x: petsc4py.PETSc.Vec, J_mat: petsc4py.PETSc.Mat,
P_mat: petsc4py.PETSc.Mat
) -> None:
"""Assemble the jacobian."""
J_mat.zeroEntries()
dolfinx.fem.petsc.assemble_matrix_block( # type: ignore[misc]
J_mat, self._J, self._bcs, diagonal=1.0) # type: ignore[arg-type]
J_mat.assemble()
if self._P is not None:
P_mat.zeroEntries()
dolfinx.fem.petsc.assemble_matrix_block( # type: ignore[misc]
P_mat, self._P, self._bcs, diagonal=1.0) # type: ignore[arg-type]
P_mat.assemble()
# Create problem
problem = NavierStokesProblem(F, J, (u, p), bc)
F_vec = dolfinx.fem.petsc.create_vector_block(problem._F)
J_mat = dolfinx.fem.petsc.create_matrix_block(problem._J)
# Solve
snes = petsc4py.PETSc.SNES().create(mesh.comm)
snes.setTolerances(max_it=20)
snes.getKSP().setType("preonly")
snes.getKSP().getPC().setType("lu")
snes.getKSP().getPC().setFactorSolverType("mumps")
snes.setObjective(problem.obj)
snes.setFunction(problem.F, F_vec)
snes.setJacobian(problem.J, J=J_mat, P=None)
snes.setMonitor(lambda _, it, residual: print(it, residual))
solution = problem.create_snes_solution()
snes.solve(None, solution)
problem.update_solutions(solution) # TODO can this be safely removed?
solution.destroy()
snes.destroy()
return (u, p)
(u_b, p_b) = run_block()
0 5.423530856245578 1 0.1294565931807582
2 0.048752053080488224 3 0.012455097181192405 4 0.010454482183771556
5 0.0008411904377641823 6 4.273314739682205e-05 7 5.8320466065962444e-08
8 2.8938586036790035e-13
viskex.dolfinx.plot_vector_field(u_b, "u", glyph_factor=1)
error: XDG_RUNTIME_DIR is invalid or not set in the environment. MESA: error: ZINK: failed to choose pdev glx: failed to create drisw screen
viskex.dolfinx.plot_scalar_field(p_b, "p")
error: XDG_RUNTIME_DIR is invalid or not set in the environment. MESA: error: ZINK: failed to choose pdev glx: failed to create drisw screen
def run_error(
u_m: dolfinx.fem.Function, p_m: dolfinx.fem.Function, u_b: dolfinx.fem.Function, p_b: dolfinx.fem.Function
) -> None:
"""Compute errors between the mixed and block cases."""
u_m_norm = np.sqrt(mesh.comm.allreduce(
dolfinx.fem.assemble_scalar(dolfinx.fem.form(ufl.inner(ufl.grad(u_m), ufl.grad(u_m)) * ufl.dx)),
op=mpi4py.MPI.SUM))
err_u_norm = np.sqrt(mesh.comm.allreduce(
dolfinx.fem.assemble_scalar(
dolfinx.fem.form(ufl.inner(ufl.grad(u_b - u_m), ufl.grad(u_b - u_m)) * ufl.dx)),
op=mpi4py.MPI.SUM))
p_m_norm = np.sqrt(mesh.comm.allreduce(
dolfinx.fem.assemble_scalar(dolfinx.fem.form(ufl.inner(p_m, p_m) * ufl.dx)), op=mpi4py.MPI.SUM))
err_p_norm = np.sqrt(mesh.comm.allreduce(
dolfinx.fem.assemble_scalar(dolfinx.fem.form(ufl.inner(p_b - p_m, p_b - p_m) * ufl.dx)),
op=mpi4py.MPI.SUM))
print("Relative error for velocity component is equal to", err_u_norm / u_m_norm)
print("Relative error for pressure component is equal to", err_p_norm / p_m_norm)
assert np.isclose(err_u_norm / u_m_norm, 0., atol=1.e-10)
assert np.isclose(err_p_norm / p_m_norm, 0., atol=1.e-10)
run_error(u_m, p_m, u_b, p_b)
Relative error for velocity component is equal to 6.165562228179097e-15 Relative error for pressure component is equal to 4.9063246456190605e-15