In this tutorial we solve the problem
$$\begin{align*} &\min_{u} \int_\Omega \left\{ (1 + u^2)\ |\nabla u|^2 - u \right\} dx,\\ &\text{s.t. } u = g\text{ on }\Gamma = \partial \Omega \end{align*}$$ where $\Omega$ is a ball in 2D.
The optimality conditions result in the following nonlinear problem
$$\begin{align*} &\int_\Omega (1+u^2)\ \nabla u \cdot \nabla v \ dx + \int_\Omega u \ |\nabla u|^2 v \ dx = \int_\Omega v \ dx\\ &\text{s.t. } u = g\text{ on }\Gamma = \partial \Omega \end{align*}$$
We compare the following two cases: the corresponding weak formulation is
$$ \text{find } u \in V_g \text{ s.t. } \int_\Omega (1+u^2)\ \nabla u \cdot \nabla v \ dx + \int_\Omega u \ |\nabla u|^2 v \ dx = \int_\Omega v \ dx, \quad \forall v \in V_0\\ $$ where $$ V_g = \{v \in H^1(\Omega): v|_\Gamma = g\},\\ V_0 = \{v \in H^1(\Omega): v|_\Gamma = 0\}.\\ $$
$$ \text{find } u, \lambda \in V \times M \text{ s.t. }\\ \begin{align*} &\int_\Omega (1+u^2)\ \nabla u \cdot \nabla v \ dx + \int_\Omega u \ |\nabla u|^2 v \ dx & &+ \int_\Gamma \lambda v \ dx & &= \int_\Omega v \ dx, & \forall v \in V,\\ &\int_\Gamma u \mu \ ds & & & &= \int_\Gamma g \mu \ ds, & \forall \mu \in M \end{align*} $$
where $$ V = H^1(\Omega),\\ M = L^{2}(\Gamma).\\ $$
This example is a prototypical case of problems containing subdomain/boundary restricted variables (the Lagrange multiplier, in this case).
import typing
import dolfinx.fem
import dolfinx.fem.petsc
import dolfinx.io
import gmsh
import mpi4py.MPI
import numpy as np
import petsc4py.PETSc
import ufl
import viskex
import multiphenicsx.fem
import multiphenicsx.fem.petsc
r = 3
mesh_size = 1. / 4.
gmsh.initialize()
gmsh.model.add("mesh")
p0 = gmsh.model.geo.addPoint(0.0, 0.0, 0.0, mesh_size)
p1 = gmsh.model.geo.addPoint(0.0, +r, 0.0, mesh_size)
p2 = gmsh.model.geo.addPoint(0.0, -r, 0.0, mesh_size)
c0 = gmsh.model.geo.addCircleArc(p1, p0, p2)
c1 = gmsh.model.geo.addCircleArc(p2, p0, p1)
boundary = gmsh.model.geo.addCurveLoop([c0, c1])
domain = gmsh.model.geo.addPlaneSurface([boundary])
gmsh.model.geo.synchronize()
gmsh.model.addPhysicalGroup(1, [c0, c1], 1)
gmsh.model.addPhysicalGroup(2, [boundary], 0)
gmsh.model.mesh.generate(2)
Info : Meshing 1D... Info : [ 0%] Meshing curve 1 (Circle) Info : [ 60%] Meshing curve 2 (Circle) Info : Done meshing 1D (Wall 0.000258373s, CPU 0.000397s) Info : Meshing 2D... Info : Meshing surface 1 (Plane, Frontal-Delaunay) Info : Done meshing 2D (Wall 0.0122594s, CPU 0.008594s) Info : 589 nodes 1177 elements
mesh, subdomains, boundaries = dolfinx.io.gmshio.model_to_mesh(
gmsh.model, comm=mpi4py.MPI.COMM_WORLD, rank=0, gdim=2)
gmsh.finalize()
# Create connectivities required by the rest of the code
mesh.topology.create_connectivity(mesh.topology.dim - 1, mesh.topology.dim)
facets_Gamma = boundaries.indices[boundaries.values == 1]
viskex.dolfinx.plot_mesh(mesh)
error: XDG_RUNTIME_DIR is invalid or not set in the environment. MESA: error: ZINK: failed to choose pdev glx: failed to create drisw screen
viskex.dolfinx.plot_mesh_tags(mesh, boundaries, "boundaries")
error: XDG_RUNTIME_DIR is invalid or not set in the environment. MESA: error: ZINK: failed to choose pdev glx: failed to create drisw screen
# Define a function space
V = dolfinx.fem.functionspace(mesh, ("Lagrange", 2))
M = V.clone()
Create element
# Define restrictions
dofs_V = np.arange(0, V.dofmap.index_map.size_local + V.dofmap.index_map.num_ghosts)
dofs_M_Gamma = dolfinx.fem.locate_dofs_topological(M, boundaries.dim, facets_Gamma)
restriction_V = multiphenicsx.fem.DofMapRestriction(V.dofmap, dofs_V)
restriction_M_Gamma = multiphenicsx.fem.DofMapRestriction(M.dofmap, dofs_M_Gamma)
restriction = [restriction_V, restriction_M_Gamma]
# Define trial and test functions, as well as solution
(du, dl) = (ufl.TrialFunction(V), ufl.TrialFunction(M))
(u, l) = (dolfinx.fem.Function(V), dolfinx.fem.Function(M))
(v, m) = (ufl.TestFunction(V), ufl.TestFunction(M))
# Define problem block forms
g = dolfinx.fem.Function(V)
g.interpolate(lambda x: np.sin(3 * x[0] + 1) * np.sin(3 * x[1] + 1))
F = [(ufl.inner((1 + u**2) * ufl.grad(u), ufl.grad(v)) * ufl.dx
+ ufl.inner(ufl.dot(ufl.grad(u), ufl.grad(u)) * u, v) * ufl.dx
+ ufl.inner(l, v) * ufl.ds - ufl.inner(1, v) * ufl.dx),
ufl.inner(u, m) * ufl.ds - ufl.inner(g, m) * ufl.ds]
J = [[ufl.derivative(F[0], u, du), ufl.derivative(F[0], l, dl)],
[ufl.derivative(F[1], u, du), ufl.derivative(F[1], l, dl)]]
# Class for interfacing with the SNES
class NonlinearLagrangeMultplierBlockProblem:
"""Define a nonlinear problem, interfacing with SNES."""
def __init__( # type: ignore[no-any-unimported]
self, F: list[ufl.Form], J: list[list[ufl.Form]],
solutions: tuple[dolfinx.fem.Function, dolfinx.fem.Function],
bcs: list[dolfinx.fem.DirichletBC],
P: typing.Optional[list[list[ufl.Form]]] = None
) -> None:
self._F = dolfinx.fem.form(F)
self._J = dolfinx.fem.form(J)
self._obj_vec = multiphenicsx.fem.petsc.create_vector_block(self._F, restriction)
self._solutions = solutions
self._bcs = bcs
self._P = P
def create_snes_solution(self) -> petsc4py.PETSc.Vec: # type: ignore[no-any-unimported]
"""
Create a petsc4py.PETSc.Vec to be passed to petsc4py.PETSc.SNES.solve.
The returned vector will be initialized with the initial guesses provided in `self._solutions`,
properly stacked together and restricted in a single block vector.
"""
x = multiphenicsx.fem.petsc.create_vector_block(self._F, restriction=restriction)
with multiphenicsx.fem.petsc.BlockVecSubVectorWrapper(x, [V.dofmap, M.dofmap], restriction) as x_wrapper:
for x_wrapper_local, sub_solution in zip(x_wrapper, self._solutions):
with sub_solution.x.petsc_vec.localForm() as sub_solution_local:
x_wrapper_local[:] = sub_solution_local
return x
def update_solutions(self, x: petsc4py.PETSc.Vec) -> None: # type: ignore[no-any-unimported]
"""Update `self._solutions` with data in `x`."""
x.ghostUpdate(addv=petsc4py.PETSc.InsertMode.INSERT, mode=petsc4py.PETSc.ScatterMode.FORWARD)
with multiphenicsx.fem.petsc.BlockVecSubVectorWrapper(x, [V.dofmap, M.dofmap], restriction) as x_wrapper:
for x_wrapper_local, sub_solution in zip(x_wrapper, self._solutions):
with sub_solution.x.petsc_vec.localForm() as sub_solution_local:
sub_solution_local[:] = x_wrapper_local
def obj( # type: ignore[no-any-unimported]
self, snes: petsc4py.PETSc.SNES, x: petsc4py.PETSc.Vec
) -> np.float64:
"""Compute the norm of the residual."""
self.F(snes, x, self._obj_vec)
return self._obj_vec.norm() # type: ignore[no-any-return]
def F( # type: ignore[no-any-unimported]
self, snes: petsc4py.PETSc.SNES, x: petsc4py.PETSc.Vec, F_vec: petsc4py.PETSc.Vec
) -> None:
"""Assemble the residual."""
self.update_solutions(x)
with F_vec.localForm() as F_vec_local:
F_vec_local.set(0.0)
multiphenicsx.fem.petsc.assemble_vector_block( # type: ignore[misc]
F_vec, self._F, self._J, self._bcs, x0=x, alpha=-1.0,
restriction=restriction, restriction_x0=restriction)
def J( # type: ignore[no-any-unimported]
self, snes: petsc4py.PETSc.SNES, x: petsc4py.PETSc.Vec, J_mat: petsc4py.PETSc.Mat,
P_mat: petsc4py.PETSc.Mat
) -> None:
"""Assemble the jacobian."""
J_mat.zeroEntries()
multiphenicsx.fem.petsc.assemble_matrix_block(
J_mat, self._J, self._bcs, diagonal=1.0, # type: ignore[arg-type]
restriction=(restriction, restriction))
J_mat.assemble()
if self._P is not None:
P_mat.zeroEntries()
multiphenicsx.fem.petsc.assemble_matrix_block(
P_mat, self._P, self._bcs, diagonal=1.0, # type: ignore[arg-type]
restriction=(restriction, restriction))
P_mat.assemble()
# Create problem
problem = NonlinearLagrangeMultplierBlockProblem(F, J, (u, l), [])
F_vec = multiphenicsx.fem.petsc.create_vector_block(problem._F, restriction=restriction)
J_mat = multiphenicsx.fem.petsc.create_matrix_block(problem._J, restriction=(restriction, restriction))
# Solve
snes = petsc4py.PETSc.SNES().create(mesh.comm)
snes.setTolerances(max_it=20)
snes.getKSP().setType("preonly")
snes.getKSP().getPC().setType("lu")
snes.getKSP().getPC().setFactorSolverType("mumps")
snes.setObjective(problem.obj)
snes.setFunction(problem.F, F_vec)
snes.setJacobian(problem.J, J=J_mat, P=None)
snes.setMonitor(lambda _, it, residual: print(it, residual))
solution = problem.create_snes_solution()
snes.solve(None, solution)
problem.update_solutions(solution) # TODO can this be safely removed?
solution.destroy()
snes.destroy()
0 1.0636696615937857 1 0.5297763037133386 2 0.326660348283296 3 0.18048341314104063 4 9.069054492574919e-05 5 6.95366681680224e-10
<petsc4py.PETSc.SNES at 0x7f349bf1fa60>
viskex.dolfinx.plot_scalar_field(u, "u")
error: XDG_RUNTIME_DIR is invalid or not set in the environment. MESA: error: ZINK: failed to choose pdev glx: failed to create drisw screen
viskex.dolfinx.plot_scalar_field(l, "l")
error: XDG_RUNTIME_DIR is invalid or not set in the environment.
MESA: error: ZINK: failed to choose pdev glx: failed to create drisw screen
# Class for interfacing with the SNES
class NonlinearStrongBoundaryConditionsProblem:
"""Define a nonlinear problem, interfacing with SNES."""
def __init__( # type: ignore[no-any-unimported]
self, F: ufl.Form, J: ufl.Form, solution: dolfinx.fem.Function,
bcs: list[dolfinx.fem.DirichletBC], P: typing.Optional[ufl.Form] = None
) -> None:
self._F = dolfinx.fem.form(F)
self._J = dolfinx.fem.form(J)
self._obj_vec = dolfinx.fem.petsc.create_vector(self._F)
self._solution = solution
self._bcs = bcs
self._P = P
def create_snes_solution(self) -> petsc4py.PETSc.Vec: # type: ignore[no-any-unimported]
"""
Create a petsc4py.PETSc.Vec to be passed to petsc4py.PETSc.SNES.solve.
The returned vector will be initialized with the initial guess provided in `self._solution`.
"""
x = self._solution.x.petsc_vec.copy()
with x.localForm() as _x, self._solution.x.petsc_vec.localForm() as _solution:
_x[:] = _solution
return x
def update_solution(self, x: petsc4py.PETSc.Vec) -> None: # type: ignore[no-any-unimported]
"""Update `self._solution` with data in `x`."""
x.ghostUpdate(addv=petsc4py.PETSc.InsertMode.INSERT, mode=petsc4py.PETSc.ScatterMode.FORWARD)
with x.localForm() as _x, self._solution.x.petsc_vec.localForm() as _solution:
_solution[:] = _x
def obj( # type: ignore[no-any-unimported]
self, snes: petsc4py.PETSc.SNES, x: petsc4py.PETSc.Vec
) -> np.float64:
"""Compute the norm of the residual."""
self.F(snes, x, self._obj_vec)
return self._obj_vec.norm() # type: ignore[no-any-return]
def F( # type: ignore[no-any-unimported]
self, snes: petsc4py.PETSc.SNES, x: petsc4py.PETSc.Vec, F_vec: petsc4py.PETSc.Vec
) -> None:
"""Assemble the residual."""
self.update_solution(x)
with F_vec.localForm() as F_vec_local:
F_vec_local.set(0.0)
dolfinx.fem.petsc.assemble_vector(F_vec, self._F)
dolfinx.fem.petsc.apply_lifting(F_vec, [self._J], [self._bcs], x0=[x], alpha=-1.0)
F_vec.ghostUpdate(addv=petsc4py.PETSc.InsertMode.ADD, mode=petsc4py.PETSc.ScatterMode.REVERSE)
dolfinx.fem.petsc.set_bc(F_vec, self._bcs, x, -1.0)
def J( # type: ignore[no-any-unimported]
self, snes: petsc4py.PETSc.SNES, x: petsc4py.PETSc.Vec, J_mat: petsc4py.PETSc.Mat,
P_mat: petsc4py.PETSc.Mat
) -> None:
"""Assemble the jacobian."""
J_mat.zeroEntries()
dolfinx.fem.petsc.assemble_matrix( # type: ignore[misc]
J_mat, self._J, self._bcs, diagonal=1.0) # type: ignore[arg-type]
J_mat.assemble()
if self._P is not None:
P_mat.zeroEntries()
dolfinx.fem.petsc.assemble_matrix( # type: ignore[misc]
P_mat, self._P, self._bcs, diagonal=1.0) # type: ignore[arg-type]
P_mat.assemble()
# Define problem block forms
u_ex = dolfinx.fem.Function(V)
F_ex = ufl.replace(F[0], {u: u_ex, l: 0})
J_ex = ufl.derivative(F_ex, u_ex, du)
# Define Dirichlet BC object on Gamma
dofs_V_Gamma = dolfinx.fem.locate_dofs_topological(V, boundaries.dim, facets_Gamma)
bc_ex = [dolfinx.fem.dirichletbc(g, dofs_V_Gamma)]
# Create problem
problem_ex = NonlinearStrongBoundaryConditionsProblem(F_ex, J_ex, u_ex, bc_ex)
F_ex_vec = dolfinx.fem.petsc.create_vector(problem_ex._F)
J_ex_mat = dolfinx.fem.petsc.create_matrix(problem_ex._J)
# Solve
snes = petsc4py.PETSc.SNES().create(mesh.comm)
snes.setTolerances(max_it=20)
snes.getKSP().setType("preonly")
snes.getKSP().getPC().setType("lu")
snes.getKSP().getPC().setFactorSolverType("mumps")
snes.setObjective(problem_ex.obj)
snes.setFunction(problem_ex.F, F_ex_vec)
snes.setJacobian(problem_ex.J, J=J_ex_mat, P=None)
snes.setMonitor(lambda _, it, residual: print(it, residual))
solution_ex = problem_ex.create_snes_solution()
snes.solve(None, solution_ex)
problem_ex.update_solution(solution_ex) # TODO can this be safely removed?
solution_ex.destroy()
snes.destroy()
0 11.903671385189543 1 1.5766579840995987 2 0.3673953356946283 3 0.05286757521106234 4 0.0017909741046908975 5 2.2418618294007724e-06 6 3.348850757573569e-12
<petsc4py.PETSc.SNES at 0x7f3440307f10>
viskex.dolfinx.plot_scalar_field(u_ex, "u")
error: XDG_RUNTIME_DIR is invalid or not set in the environment. MESA: error: ZINK: failed to choose pdev glx: failed to create drisw screen
u_ex_norm = np.sqrt(mesh.comm.allreduce(
dolfinx.fem.assemble_scalar(dolfinx.fem.form(ufl.inner(ufl.grad(u_ex), ufl.grad(u_ex)) * ufl.dx)),
op=mpi4py.MPI.SUM))
err_norm = np.sqrt(mesh.comm.allreduce(
dolfinx.fem.assemble_scalar(dolfinx.fem.form(ufl.inner(ufl.grad(u_ex - u), ufl.grad(u_ex - u)) * ufl.dx)),
op=mpi4py.MPI.SUM))
print("Relative error is equal to", err_norm / u_ex_norm)
assert np.isclose(err_norm / u_ex_norm, 0., atol=1.e-9)
Relative error is equal to 1.5375129401353526e-10