In this tutorial we solve the optimal control problem
$$\min J(y, u) = \frac{1}{2} \int_{\Gamma_{obs}} (v - v_d)^2 dx + \frac{\alpha_1}{2} \int_{\Gamma_C} |\nabla_{\mathbf{t}} u|^2 ds + \frac{\alpha_2}{2} \int_{\Gamma_C} |u|^2 ds$$ s.t. $$\begin{cases} - \nu \Delta v + \nabla p = f & \text{in } \Omega\\ \text{div} v = 0 & \text{in } \Omega\\ v = g & \text{on } \Gamma_{in}\\ v = 0 & \text{on } \Gamma_{w}\\ p n - \nu \partial_n v = u & \text{on } \Gamma_{C} \end{cases}$$
where $$\begin{align*} & \Omega & \text{unit square}\\ & \Gamma_{in} & \text{has boundary id 1}\\ & \Gamma_{w} & \text{has boundary id 2}\\ & \Gamma_{C} & \text{has boundary id 3}\\ & \Gamma_{obs} & \text{has interface id 4}\\ & u \in [L^2(\Gamma_C)]^2 & \text{control variable}\\ & v \in [H^1(\Omega)]^2 & \text{state velocity variable}\\ & p \in L^2(\Omega) & \text{state pressure variable}\\ & \alpha_1, \alpha_2 > 0 & \text{penalization parameters}\\ & v_d & \text{desired state}\\ & f & \text{forcing term}\\ & g & \text{inlet profile}\\ \end{align*}$$ using an adjoint formulation solved by a one shot approach.
The test case is from section 5.5 of F. Negri. Reduced basis method for parametrized optimal control problems governed by PDEs. Master thesis, Politecnico di Milano, 2010-2011.
import dolfinx.fem
import dolfinx.io
import dolfinx.mesh
import gmsh
import mpi4py.MPI
import numpy as np
import numpy.typing
import petsc4py.PETSc
import ufl
import viskex
import multiphenicsx.fem
import multiphenicsx.fem.petsc
mu1 = 1.0
mu2 = np.pi / 5.0
mu3 = np.pi / 6.0
mu4 = 1.0
mu5 = 1.7
mu6 = 2.2
mesh_size = 0.05
Y = 1.0
X = -Y
L = 3.0
B = Y - mu1
H_1 = B + np.tan(mu2) * mu5
H_2 = B - np.tan(mu3) * mu6
L_1 = mu1 * np.cos(mu2) * np.sin(mu2)
L_2 = (B - X) * np.cos(mu3) * np.sin(mu3)
N = mu1 * np.cos(mu2) * np.cos(mu2)
M = - (B - X) * np.cos(mu3) * np.cos(mu3)
gmsh.initialize()
gmsh.model.add("mesh")
p0 = gmsh.model.geo.addPoint(0.0, X, 0.0, mesh_size)
p1 = gmsh.model.geo.addPoint(L - mu4, X, 0.0, mesh_size)
p2 = gmsh.model.geo.addPoint(L, X, 0.0, mesh_size)
p3 = gmsh.model.geo.addPoint(L + mu6 - L_2, H_2 + M, 0.0, mesh_size)
p4 = gmsh.model.geo.addPoint(L + mu6, H_2, 0.0, mesh_size)
p5 = gmsh.model.geo.addPoint(L, B, 0.0, mesh_size)
p6 = gmsh.model.geo.addPoint(L + mu5, H_1, 0.0, mesh_size)
p7 = gmsh.model.geo.addPoint(L + mu5 - L_1, H_1 + N, 0.0, mesh_size)
p8 = gmsh.model.geo.addPoint(L, Y, 0.0, mesh_size)
p9 = gmsh.model.geo.addPoint(L - mu4, Y, 0.0, mesh_size)
p10 = gmsh.model.geo.addPoint(0.0, Y, 0.0, mesh_size)
l0 = gmsh.model.geo.addLine(p0, p1)
l1 = gmsh.model.geo.addLine(p1, p2)
l2 = gmsh.model.geo.addLine(p2, p3)
l3 = gmsh.model.geo.addLine(p3, p4)
l4 = gmsh.model.geo.addLine(p4, p5)
l5 = gmsh.model.geo.addLine(p5, p6)
l6 = gmsh.model.geo.addLine(p6, p7)
l7 = gmsh.model.geo.addLine(p7, p8)
l8 = gmsh.model.geo.addLine(p8, p9)
l9 = gmsh.model.geo.addLine(p9, p10)
l10 = gmsh.model.geo.addLine(p10, p0)
l11 = gmsh.model.geo.addLine(p1, p9)
l12 = gmsh.model.geo.addLine(p2, p5)
l13 = gmsh.model.geo.addLine(p5, p8)
line_loop_rectangle_left = gmsh.model.geo.addCurveLoop([l0, l11, l9, l10])
line_loop_rectangle_right = gmsh.model.geo.addCurveLoop([l1, l12, l13, l8, -l11])
line_loop_bifurcation_top = gmsh.model.geo.addCurveLoop([l5, l6, l7, -l13])
line_loop_bifurcation_bottom = gmsh.model.geo.addCurveLoop([l2, l3, l4, -l12])
rectangle_left = gmsh.model.geo.addPlaneSurface([line_loop_rectangle_left])
rectangle_right = gmsh.model.geo.addPlaneSurface([line_loop_rectangle_right])
bifurcation_top = gmsh.model.geo.addPlaneSurface([line_loop_bifurcation_top])
bifurcation_bottom = gmsh.model.geo.addPlaneSurface([line_loop_bifurcation_bottom])
gmsh.model.geo.synchronize()
gmsh.model.addPhysicalGroup(1, [l10], 1)
gmsh.model.addPhysicalGroup(1, [l0, l1, l2, l4, l5, l7, l8, l9], 2)
gmsh.model.addPhysicalGroup(1, [l3, l6], 3)
gmsh.model.addPhysicalGroup(1, [l11], 4)
gmsh.model.addPhysicalGroup(2, [rectangle_left], 1)
gmsh.model.addPhysicalGroup(2, [rectangle_right], 2)
gmsh.model.addPhysicalGroup(2, [bifurcation_top], 3)
gmsh.model.addPhysicalGroup(2, [bifurcation_bottom], 4)
gmsh.model.mesh.generate(2)
Info : Meshing 1D... Info : [ 0%] Meshing curve 1 (Line) Info : [ 10%] Meshing curve 2 (Line) Info : [ 20%] Meshing curve 3 (Line) Info : [ 30%] Meshing curve 4 (Line) Info : [ 30%] Meshing curve 5 (Line) Info : [ 40%] Meshing curve 6 (Line) Info : [ 50%] Meshing curve 7 (Line) Info : [ 60%] Meshing curve 8 (Line) Info : [ 60%] Meshing curve 9 (Line) Info : [ 70%] Meshing curve 10 (Line) Info : [ 80%] Meshing curve 11 (Line) Info : [ 80%] Meshing curve 12 (Line) Info : [ 90%] Meshing curve 13 (Line) Info : [100%] Meshing curve 14 (Line) Info : Done meshing 1D (Wall 0.00156008s, CPU 0s) Info : Meshing 2D... Info : [ 0%] Meshing surface 1 (Plane, Frontal-Delaunay) Info : [ 30%] Meshing surface 2 (Plane, Frontal-Delaunay) Info : [ 60%] Meshing surface 3 (Plane, Frontal-Delaunay) Info : [ 80%] Meshing surface 4 (Plane, Frontal-Delaunay) Info : Done meshing 2D (Wall 0.0950367s, CPU 0.089398s) Info : 4623 nodes 9335 elements
partitioner = dolfinx.mesh.create_cell_partitioner(dolfinx.mesh.GhostMode.shared_facet)
mesh, subdomains, boundaries_and_interfaces = dolfinx.io.gmshio.model_to_mesh(
gmsh.model, comm=mpi4py.MPI.COMM_WORLD, rank=0, gdim=2, partitioner=partitioner)
gmsh.finalize()
# Create connectivities required by the rest of the code
mesh.topology.create_connectivity(mesh.topology.dim - 1, mesh.topology.dim)
boundaries_1 = boundaries_and_interfaces.indices[boundaries_and_interfaces.values == 1]
boundaries_2 = boundaries_and_interfaces.indices[boundaries_and_interfaces.values == 2]
boundaries_3 = boundaries_and_interfaces.indices[boundaries_and_interfaces.values == 3]
interfaces_4 = boundaries_and_interfaces.indices[boundaries_and_interfaces.values == 4]
boundaries_12 = boundaries_and_interfaces.indices[np.isin(boundaries_and_interfaces.values, (1, 2))]
integration_entities_on_Gamma_obs = dolfinx.fem.compute_integration_domains(
dolfinx.fem.IntegralType.interior_facet, mesh.topology, interfaces_4)
integration_entities_on_Gamma_obs_reshaped = integration_entities_on_Gamma_obs.reshape(-1, 4)
connected_cells_to_Gamma_obs = integration_entities_on_Gamma_obs_reshaped[:, [0, 2]]
subdomain_ordering = (
subdomains.values[connected_cells_to_Gamma_obs[:, 0]] < subdomains.values[connected_cells_to_Gamma_obs[:, 1]])
if len(subdomain_ordering) > 0 and any(subdomain_ordering):
integration_entities_on_Gamma_obs_reshaped[subdomain_ordering] = integration_entities_on_Gamma_obs_reshaped[
subdomain_ordering][:, [2, 3, 0, 1]]
integration_entities_on_Gamma_obs = integration_entities_on_Gamma_obs_reshaped.flatten()
# Define associated measures
ds = ufl.Measure("ds", subdomain_data=boundaries_and_interfaces)
dS = ufl.Measure("dS", domain=mesh, subdomain_data=[(4, np.array(integration_entities_on_Gamma_obs, dtype=np.int32))])
# Normal and tangent
n = ufl.FacetNormal(mesh)
t = ufl.as_vector([n[1], -n[0]])
viskex.dolfinx.plot_mesh(mesh)
error: XDG_RUNTIME_DIR is invalid or not set in the environment. MESA: error: ZINK: failed to choose pdev glx: failed to create drisw screen
viskex.dolfinx.plot_mesh_tags(mesh, boundaries_and_interfaces, "boundaries and interfaces")
error: XDG_RUNTIME_DIR is invalid or not set in the environment. MESA: error: ZINK: failed to choose pdev glx: failed to create drisw screen
Y_velocity = dolfinx.fem.functionspace(mesh, ("Lagrange", 2, (mesh.geometry.dim, )))
Y_pressure = dolfinx.fem.functionspace(mesh, ("Lagrange", 1))
U = dolfinx.fem.functionspace(mesh, ("Lagrange", 2, (mesh.geometry.dim, )))
Q_velocity = Y_velocity.clone()
Q_pressure = Y_pressure.clone()
Create element Create element Create element
dofs_Y_velocity = np.arange(0, Y_velocity.dofmap.index_map.size_local + Y_velocity.dofmap.index_map.num_ghosts)
dofs_Y_pressure = np.arange(0, Y_pressure.dofmap.index_map.size_local + Y_pressure.dofmap.index_map.num_ghosts)
dofs_U = dolfinx.fem.locate_dofs_topological(U, boundaries_and_interfaces.dim, boundaries_3)
dofs_Q_velocity = dofs_Y_velocity
dofs_Q_pressure = dofs_Y_pressure
restriction_Y_velocity = multiphenicsx.fem.DofMapRestriction(Y_velocity.dofmap, dofs_Y_velocity)
restriction_Y_pressure = multiphenicsx.fem.DofMapRestriction(Y_pressure.dofmap, dofs_Y_pressure)
restriction_U = multiphenicsx.fem.DofMapRestriction(U.dofmap, dofs_U)
restriction_Q_velocity = multiphenicsx.fem.DofMapRestriction(Q_velocity.dofmap, dofs_Q_velocity)
restriction_Q_pressure = multiphenicsx.fem.DofMapRestriction(Q_pressure.dofmap, dofs_Q_pressure)
restriction = [
restriction_Y_velocity, restriction_Y_pressure, restriction_U, restriction_Q_velocity, restriction_Q_pressure]
(v, p) = (ufl.TrialFunction(Y_velocity), ufl.TrialFunction(Y_pressure))
(w, q) = (ufl.TestFunction(Y_velocity), ufl.TestFunction(Y_pressure))
u = ufl.TrialFunction(U)
r = ufl.TestFunction(U)
(z, b) = (ufl.TrialFunction(Q_velocity), ufl.TrialFunction(Q_pressure))
(s, d) = (ufl.TestFunction(Q_velocity), ufl.TestFunction(Q_pressure))
nu = 0.04
alpha_1 = 0.001
alpha_2 = 0.1 * alpha_1
x = ufl.SpatialCoordinate(mesh)
c = 0.8
v_d = ufl.as_vector((
(c * 10.0 * (x[1]**3 - x[1]**2 - x[1] + 1.0)) + ((1.0 - c) * 10.0 * (-x[1]**3 - x[1]**2 + x[1] + 1.0)),
0.0))
ff = dolfinx.fem.Constant(mesh, tuple(petsc4py.PETSc.ScalarType(0) for _ in range(2)))
def g_eval(x: np.typing.NDArray[np.float64]) -> np.typing.NDArray[ # type: ignore[no-any-unimported]
petsc4py.PETSc.ScalarType]:
"""Return the parabolic velocity profile at the inlet."""
values = np.zeros((2, x.shape[1]))
values[0, :] = 10.0 * (x[1, :] + 1.0) * (1.0 - x[1, :])
return values
g = dolfinx.fem.Function(Y_velocity)
g.interpolate(g_eval)
bc0 = dolfinx.fem.Function(Y_velocity)
def tracking(v: ufl.Argument, w: ufl.Argument) -> ufl.core.expr.Expr: # type: ignore[no-any-unimported]
"""Return the UFL expression corresponding to the tracking term."""
return ufl.inner(v, w)("-")
def penalty(u: ufl.Argument, r: ufl.Argument) -> ufl.core.expr.Expr: # type: ignore[no-any-unimported]
"""Return the UFL expression corresponding to the penalty term."""
return alpha_1 * ufl.inner(ufl.grad(u) * t, ufl.grad(r) * t) + alpha_2 * ufl.inner(u, r)
a = [[tracking(v, w) * dS(4), None, None, nu * ufl.inner(ufl.grad(z), ufl.grad(w)) * ufl.dx,
- ufl.inner(b, ufl.div(w)) * ufl.dx],
[None, None, None, - ufl.inner(ufl.div(z), q) * ufl.dx, None],
[None, None, penalty(u, r) * ds(3), - ufl.inner(z, r) * ds(3), None],
[nu * ufl.inner(ufl.grad(v), ufl.grad(s)) * ufl.dx, - ufl.inner(p, ufl.div(s)) * ufl.dx,
- ufl.inner(u, s) * ds(3), None, None],
[- ufl.inner(ufl.div(v), d) * ufl.dx, None, None, None, None]]
f = [tracking(v_d, w) * dS(4),
None,
None,
ufl.inner(ff, s) * ufl.dx,
None]
a[0][0] += dolfinx.fem.Constant(mesh, petsc4py.PETSc.ScalarType(0)) * ufl.inner(v, w) * (ds(1) + ds(2))
a[3][3] = dolfinx.fem.Constant(mesh, petsc4py.PETSc.ScalarType(0)) * ufl.inner(z, s) * (ds(1) + ds(2))
f[1] = ufl.inner(dolfinx.fem.Constant(mesh, petsc4py.PETSc.ScalarType(0)), q) * ufl.dx
f[2] = ufl.inner(dolfinx.fem.Constant(mesh, tuple(petsc4py.PETSc.ScalarType(0) for _ in range(2))), r) * ufl.dx
f[4] = ufl.inner(dolfinx.fem.Constant(mesh, petsc4py.PETSc.ScalarType(0)), d) * ufl.dx
a_cpp = dolfinx.fem.form(a)
f_cpp = dolfinx.fem.form(f)
bdofs_Y_velocity_1 = dolfinx.fem.locate_dofs_topological(
(Y_velocity, Y_velocity), mesh.topology.dim - 1, boundaries_1)
bdofs_Y_velocity_2 = dolfinx.fem.locate_dofs_topological(
(Y_velocity, Y_velocity), mesh.topology.dim - 1, boundaries_2)
bdofs_Q_velocity_12 = dolfinx.fem.locate_dofs_topological(
(Q_velocity, Y_velocity), mesh.topology.dim - 1, boundaries_12)
bc = [dolfinx.fem.dirichletbc(g, bdofs_Y_velocity_1, Y_velocity),
dolfinx.fem.dirichletbc(bc0, bdofs_Y_velocity_2, Y_velocity),
dolfinx.fem.dirichletbc(bc0, bdofs_Q_velocity_12, Q_velocity)]
(v, p) = (dolfinx.fem.Function(Y_velocity), dolfinx.fem.Function(Y_pressure))
u = dolfinx.fem.Function(U)
(z, b) = (dolfinx.fem.Function(Q_velocity), dolfinx.fem.Function(Q_pressure))
J = 0.5 * tracking(v - v_d, v - v_d) * dS(4) + 0.5 * penalty(u, u) * ds(3)
J_cpp = dolfinx.fem.form(J)
# Extract state forms from the optimality conditions
a_state = [[ufl.replace(a[i][j], {s: w, d: q}) if a[i][j] is not None else None for j in (0, 1)] for i in (3, 4)]
f_state = [ufl.replace(f[i], {s: w, d: q}) for i in (3, 4)]
a_state_cpp = dolfinx.fem.form(a_state)
f_state_cpp = dolfinx.fem.form(f_state)
bc_state = [bc[0], bc[1]]
# Assemble the block linear system for the state
A_state = multiphenicsx.fem.petsc.assemble_matrix_block(
a_state_cpp, bcs=bc_state, restriction=([restriction[i] for i in (3, 4)], [restriction[j] for j in (0, 1)]))
A_state.assemble()
F_state = multiphenicsx.fem.petsc.assemble_vector_block(
f_state_cpp, a_state_cpp, bcs=bc_state, restriction=[restriction[i] for i in (3, 4)])
# Solve
vp = multiphenicsx.fem.petsc.create_vector_block(
[f_cpp[j] for j in (0, 1)], restriction=[restriction[j] for j in (0, 1)])
ksp = petsc4py.PETSc.KSP()
ksp.create(mesh.comm)
ksp.setOperators(A_state)
ksp.setType("preonly")
ksp.getPC().setType("lu")
ksp.getPC().setFactorSolverType("mumps")
ksp.setFromOptions()
ksp.solve(F_state, vp)
vp.ghostUpdate(addv=petsc4py.PETSc.InsertMode.INSERT, mode=petsc4py.PETSc.ScatterMode.FORWARD)
ksp.destroy()
<petsc4py.PETSc.KSP at 0x7fd6685dc950>
# Split the block solution in components
with multiphenicsx.fem.petsc.BlockVecSubVectorWrapper(
vp, [c.function_space.dofmap for c in (v, p)], [restriction[j] for j in (0, 1)]) as vp_wrapper:
for vp_wrapper_local, component in zip(vp_wrapper, (v, p)):
with component.x.petsc_vec.localForm() as component_local:
component_local[:] = vp_wrapper_local
vp.destroy()
<petsc4py.PETSc.Vec at 0x7fd6685c78d0>
J_uncontrolled = mesh.comm.allreduce(dolfinx.fem.assemble_scalar(J_cpp), op=mpi4py.MPI.SUM)
print("Uncontrolled J =", J_uncontrolled)
assert np.isclose(J_uncontrolled, 2.8479865)
Uncontrolled J = 2.847994284338595
viskex.dolfinx.plot_vector_field(v, "uncontrolled state velocity", glyph_factor=1e-2)
error: XDG_RUNTIME_DIR is invalid or not set in the environment. MESA: error: ZINK: failed to choose pdev glx: failed to create drisw screen
viskex.dolfinx.plot_scalar_field(p, "uncontrolled state pressure")
error: XDG_RUNTIME_DIR is invalid or not set in the environment. MESA: error: ZINK: failed to choose pdev glx: failed to create drisw screen
# Assemble the block linear system for the optimality conditions
A = multiphenicsx.fem.petsc.assemble_matrix_block(a_cpp, bcs=bc, restriction=(restriction, restriction))
A.assemble()
F = multiphenicsx.fem.petsc.assemble_vector_block(f_cpp, a_cpp, bcs=bc, restriction=restriction)
# Solve
vpuzb = multiphenicsx.fem.petsc.create_vector_block(f_cpp, restriction=restriction)
ksp = petsc4py.PETSc.KSP()
ksp.create(mesh.comm)
ksp.setOperators(A)
ksp.setType("preonly")
ksp.getPC().setType("lu")
ksp.getPC().setFactorSolverType("mumps")
ksp.setFromOptions()
ksp.solve(F, vpuzb)
vpuzb.ghostUpdate(addv=petsc4py.PETSc.InsertMode.INSERT, mode=petsc4py.PETSc.ScatterMode.FORWARD)
ksp.destroy()
<petsc4py.PETSc.KSP at 0x7fd66862bf10>
# Split the block solution in components
with multiphenicsx.fem.petsc.BlockVecSubVectorWrapper(
vpuzb, [c.function_space.dofmap for c in (v, p, u, z, b)], restriction) as vpuzb_wrapper:
for vpuzb_wrapper_local, component in zip(vpuzb_wrapper, (v, p, u, z, b)):
with component.x.petsc_vec.localForm() as component_local:
component_local[:] = vpuzb_wrapper_local
vpuzb.destroy()
<petsc4py.PETSc.Vec at 0x7fd66862bdd0>
J_controlled = mesh.comm.allreduce(dolfinx.fem.assemble_scalar(J_cpp), op=mpi4py.MPI.SUM)
print("Optimal J =", J_controlled)
assert np.isclose(J_controlled, 1.7643950)
Optimal J = 1.7643940722319043
viskex.dolfinx.plot_vector_field(v, "state velocity", glyph_factor=1e-2)
error: XDG_RUNTIME_DIR is invalid or not set in the environment. MESA: error: ZINK: failed to choose pdev glx: failed to create drisw screen
viskex.dolfinx.plot_scalar_field(p, "state pressure")
error: XDG_RUNTIME_DIR is invalid or not set in the environment. MESA: error: ZINK: failed to choose pdev glx: failed to create drisw screen
viskex.dolfinx.plot_vector_field(u, "control", glyph_factor=1e-1)
error: XDG_RUNTIME_DIR is invalid or not set in the environment. MESA: error: ZINK: failed to choose pdev glx: failed to create drisw screen
viskex.dolfinx.plot_vector_field(z, "adjoint velocity", glyph_factor=1e-1)
error: XDG_RUNTIME_DIR is invalid or not set in the environment. MESA: error: ZINK: failed to choose pdev glx: failed to create drisw screen
viskex.dolfinx.plot_scalar_field(b, "adjoint pressure")
error: XDG_RUNTIME_DIR is invalid or not set in the environment. MESA: error: ZINK: failed to choose pdev glx: failed to create drisw screen